Trademarks

The stylized "S" and "SMART" is a registered trademark of SMART Modular Technologies, Inc. and “SMART Embedded Computing” and the SMART Embedded Computing logo are trademarks of SMART Modular Technologies, Inc. All other names and logos referred to are trade names, trademarks, or registered trademarks of their respective owners. These materials are provided by SMART Embedded Computing as a service to its customers and may be used for informational purposes only.

Disclaimer*

SMART Embedded Computing (SMART EC) assumes no responsibility for errors or omissions in these materials. These materials are provided "AS IS" without warranty of any kind, either expressed or implied, including but not limited to, the implied warranties of merchantability, fitness for a particular purpose, or non-infringement. SMART EC further does not warrant the accuracy or completeness of the information, text, graphics, links or other items contained within these materials. SMART EC shall not be liable for any special, indirect, incidental, or consequential damages, including without limitation, lost revenues or lost profits, which may result from the use of these materials. SMART EC may make changes to these materials, or to the products described therein, at any time without notice. SMART EC makes no commitment to update the information contained within these materials.

Electronic versions of this material may be read online, downloaded for personal use, or referenced in another document as a URL to a SMART EC website. The text itself may not be published commercially in print or electronic form, edited, translated, or otherwise altered without the permission of SMART EC.

It is possible that this publication may contain reference to or information about SMART EC products, programming, or services that are not available in your country. Such references or information must not be construed to mean that SMART EC intends to announce such SMART EC products, programming, or services in your country.

Limited and Restricted Rights Legend

If the documentation contained herein is supplied, directly or indirectly, to the U.S. Government, the following notice shall apply unless otherwise agreed to in writing by SMART Embedded Computing.

Use, duplication, or disclosure by the Government is subject to restrictions as set forth in subparagraph (b)(3) of the Rights in Technical Data clause at DFARS 252.227-7013 (Nov. 1995) and of the Rights in Noncommercial Computer Software and Documentation clause at DFARS 252.227-7014 (Jun. 1995).

SMART Embedded Computing, Inc.
2900 S. Diablo Way, Suite 190
Tempe, Arizona 85282
USA

*For full legal terms and conditions, visit www.smartembedded.com/ec/legal
Table of Contents

About this Manual .. 5

1 Introduction ... 9
 1.1 Overview .. 9
 1.2 Deliverables .. 9

2 Booting VxWorks .. 11
 2.1 Introduction ... 11
 2.2 Network Boot ... 11
 2.2.1 Prerequisites .. 11
 2.2.2 Booting Procedure ... 11
 2.3 Disk Boot .. 13
 2.3.1 Prerequisites .. 13
 2.3.2 Booting Procedure ... 13
 2.4 USB Boot .. 15
 2.4.1 Prerequisites .. 15
 2.4.2 Booting Procedure ... 15

3 Building Board Support Package .. 17
 3.1 Building Procedure ... 17

A Sample Output .. 27
 A.1 Network Boot .. 27
 A.1.1 VxWorks Booting on Core 0. 27
 A.1.2 VxWorks Booting on Core 1 29
 A.2 Disk Boot .. 30
 A.2.1 VxWorks Booting on Core 0. 30
 A.2.2 VxWorks Booting on Core 1 31
 A.3 USB Boot ... 33
 A.3.1 VxWorks Booting on Core 0. 33
 A.3.2 VxWorks Booting on Core 1 34
Table of Contents

B **Related Documentation** .. 37

B.1 SMART Embedded Computing Documentation .. 37
About this Manual

Overview of Contents

This manual is divided into the following chapters and appendix:

Chapter 1, Introduction on page 9, provides an overview of this manual.

Chapter 2, Booting VxWorks on page 11, describes the procedure to boot VxWorks 6.8 AMP on the MVME2500.

Chapter 3, Building Board Support Package on page 17, describes the procedure to build Board Support Package (BSP).

Appendix A, Sample Output on page 27, provides the sample output of VxWorks 6.8 AMP booting through network, disk and USB.

Appendix B, Related Documentation on page 37 lists the related documents of VxWorks on the MVME2500 6.8 AMP.

Abbreviations

This document uses the following abbreviations:

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMP</td>
<td>Asymmetric Multiprocessing</td>
</tr>
<tr>
<td>BSP</td>
<td>Board Support Package</td>
</tr>
<tr>
<td>FTP</td>
<td>File Transfer Protocol</td>
</tr>
<tr>
<td>IP</td>
<td>Internet Protocol</td>
</tr>
<tr>
<td>SATA</td>
<td>Serial Advanced Technology Attachment</td>
</tr>
<tr>
<td>SBC</td>
<td>Single Board Computer</td>
</tr>
<tr>
<td>TFTP</td>
<td>Trivial File Transfer Protocol</td>
</tr>
</tbody>
</table>
Conventions

The following table describes the conventions used throughout this manual.

<table>
<thead>
<tr>
<th>Notation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x00000000</td>
<td>Typical notation for hexadecimal numbers (digits are 0 through F), for example used for addresses and offsets</td>
</tr>
<tr>
<td>0b0000</td>
<td>Same for binary numbers (digits are 0 and 1)</td>
</tr>
<tr>
<td>bold</td>
<td>Used to emphasize a word</td>
</tr>
<tr>
<td>Screen</td>
<td>Used for on-screen output and code related elements or commands. Sample of Programming used in a table (9pt)</td>
</tr>
<tr>
<td>Courier + Bold</td>
<td>Used to characterize user input and to separate it from system output</td>
</tr>
<tr>
<td>Reference</td>
<td>Used for references and for table and figure descriptions</td>
</tr>
<tr>
<td>File > Exit</td>
<td>Notation for selecting a sub-menu</td>
</tr>
<tr>
<td><text></td>
<td>Notation for variables and keys</td>
</tr>
<tr>
<td>[text]</td>
<td>Notation for software buttons to click on the screen and parameter description</td>
</tr>
<tr>
<td>...</td>
<td>Repeated item for example node 1, node 2, ..., node 12</td>
</tr>
<tr>
<td>. . .</td>
<td>Omission of information from example/command that is not necessary at the time</td>
</tr>
<tr>
<td>..</td>
<td>Ranges, for example: 0..4 means one of the integers 0,1,2,3, and 4 (used in registers)</td>
</tr>
<tr>
<td></td>
<td>Logical OR</td>
</tr>
<tr>
<td>🚨</td>
<td>Indicates a hazardous situation which, if not avoided, could result in death or serious injury</td>
</tr>
<tr>
<td>🚨</td>
<td>Indicates a hazardous situation which, if not avoided, may result in minor or moderate injury</td>
</tr>
</tbody>
</table>
About this Manual

<table>
<thead>
<tr>
<th>Notation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>![Warning Icon]</td>
<td>Indicates a property damage message</td>
</tr>
<tr>
<td>![Caution Icon]</td>
<td>Indicates a hot surface that could result in moderate or serious injury</td>
</tr>
<tr>
<td>![Electrical Hazard Icon]</td>
<td>Indicates an electrical situation that could result in moderate injury or death</td>
</tr>
<tr>
<td>![ESD Icon]</td>
<td>Indicates that when working in an ESD environment care should be taken to use proper ESD practices</td>
</tr>
<tr>
<td>![Important Information Icon]</td>
<td>No danger encountered, pay attention to important information</td>
</tr>
</tbody>
</table>

Summary of Changes

This manual has been revised and replaces all prior editions.

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Publication Date</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>6806800M27C</td>
<td>September 2019</td>
<td>Re-branded to SMART Embedded Computing template. Updated Conventions table; updated Freescale to NXP; updated Related Documentation paragraph.</td>
</tr>
<tr>
<td>6806800M27B</td>
<td>August 2014</td>
<td>Re-branded to Artesyn template.</td>
</tr>
<tr>
<td>6806800M27A</td>
<td>April 2011</td>
<td>Initial version</td>
</tr>
</tbody>
</table>
About this Manual
Introduction

1.1 Overview

The MVME2500 Single Board Computer (SBC) is a VMEbus board, which features a single-core P2010 or the dual-core P2020 NXP® QorIQ® processors.

VxWorks 6.8 Asymmetric Multiprocessing (AMP) allows the independent instances of the VxWorks operating system to run on the individual CPUs of a multi-core processor.

This document describes the procedure to boot the VxWorks 6.8 AMP on the MVME2500 board.

1.2 Deliverables

The following table lists the MVME2500 deliverables.

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>vxWorks_00.st</td>
<td>VxWorks boot image file for Core 0</td>
</tr>
<tr>
<td>vxWorks_01.st</td>
<td>VxWorks boot image file for Core 1</td>
</tr>
<tr>
<td>mvme2500_AMP_rel1.0.tar.gz</td>
<td>VxWorks 6.8 AMP Board Support Package (BSP) for MVME2500</td>
</tr>
</tbody>
</table>
2.1 Introduction

You can boot VxWorks AMP on the MVME2500 board using any of the following methods:

- Network Boot
- Disk Boot
- USB Boot

2.2 Network Boot

2.2.1 Prerequisites

You should have Connectivity to the TFTP server.

2.2.2 Booting Procedure

The TFTP server should be configured and started in the connected PC. The VxWorks boot image file, `vxWorks_00.st`, should be made available at the standard TFTP boot image path `/tftpboot`.

To boot VxWorks AMP through network, perform the following steps:

1. Power up the MVME2500 board.
 By default, it provides the U-Boot prompt.

2. Set the environmental variables at the U-Boot prompt.
   ```
   setenv ipaddr <Board ip address>
   setenv serverip <TFTP server ip address>
   setenv gatewayip <Gateway ip address>
   setenv netmask <Netmask>
   ```
 Example:
   ```
   setenv ipaddr 10.130.101.206
   setenv serverip 10.130.101.216
   setenv gatewayip 10.130.101.254
   setenv netmask 255.255.255.0
   ```

3. Set the VxWorks boot image file name.
   ```
   setenv vxbootfile vxWorks_00.st
   ```
Booting VxWorks

4. Set the VxWorks bootline arguments.

```
setenv vxbootargs 'motetsec(0,0)10.130.101.216:vxWorks
h=10.130.101.216  e=10.130.101.206:ffffff00  u=vxworks pw=vxworks
f=0x80'
```

Parameters description:
- motetsec(0,0) : ethernet interface 0 on cpu 0
- 10.130.101.216 : Host Machine IP
- 10.130.101.206 : Board IP
- fffffff00 : Netmask
- u=vxworks : Username on host machine
- p=vxworks : Password for the above user in host machine
- f=0x80 : File Transfer Protocol (FTP)

5. Set the VxWorks network boot command.

```
setenv vxboot 'tftpboot $vxbootfile && setenv bootargs $vxbootargs
&& bootvx'
```

6. Save your current environmental variables.

```
saveenv
```

7. Boot VxWorks on Core 0 through network.

```
run vxboot
```

This will boot the VxWorks on Core 0 only.
For sample output of VxWorks booting on Core 0 through network, refer to Section 4.1.1, VxWorks Booting on Core 0 on page 27.

8. Boot VxWorks Image on Core 1, execute wrload command.

Example: `wrload "-file <image dir>/vxWorks -cpu 1"
```

To access the Core1 Console use the tip utility.
Example: `tip "dev=/ttyMsd0#tag=green"`
For more information refer the tip utility documentation.

For sample output of VxWorks booting on Core 1 through network, refer to Section 4.1.2, VxWorks Booting on Core 1 on page 29.
2.3 Disk Boot

2.3.1 Prerequisites

You should have Serial Advanced Technology Attachment (SATA) hard disk with ext2 file system loaded, and VxWorks image loaded to the ext2 file system.

2.3.2 Booting Procedure

To boot VxWorks AMP using disk, perform the following steps:

1. Power up the MVME2500 board.
   By default, it provides the U-Boot prompt.

2. Set the environmental variables at the U-Boot prompt.
   setenv ipaddr <Board ip address>
   setenv serverip <TFTP server ip address>
   setenv gatewayip <Gateway ip address>
   setenv netmask <Netmask>
   Example:
   setenv ipaddr 10.130.101.206
   setenv serverip 10.130.101.216
   setenv gatewayip 10.130.101.254
   setenv netmask 255.255.255.0

3. Set the VxWorks boot image file name.
   setenv vxbootfile vxWorks_00.st

4. Set the VxWorks bootline arguments.
   setenv vxbootargs 'motetsec(0,0)10.130.101.216:vxWorks
   h=10.130.101.216 e=10.130.101.206:ffffff00 u=vxworks pw=vxworks
   f=0x80’

Parameters description:
motetsec(0,0) : ethernet interface 0 on cpu 0
10.130.101.216 : Host Machine IP
10.130.101.206 : Board IP
ffffff00 : Netmask
u=vxworks : Username on host machine
p=vxworks : Password for the above user in host machine
f=0x80 : File Transfer Protocol (FTP)
5. Set the VxWorks disk boot command.
   ```
 setenv vxdiskboot 'ext2load scsi 0:1 0x1000000 $vxbootfile &&
 setenv bootargs $vxbootargs && bootvx'
   ```

6. Save your current environmental variables.
   ```
 saveenv
   ```

7. To boot VxWorks on Core 0 through hard disk, execute the following command:
   ```
 run vxdiskboot
   ```
   This will boot VxWorks on Core 0 only.
   For sample output of VxWorks booting on Core 0 through hard disk, refer to Section A.2.1, VxWorks Booting on Core 0 on page 30.

8. Boot VxWorks Image on Core 1, execute `wrload` command.
   Example: `wrload "-file <image dir>/vxWorks -cpu 1"
   ```
 To access the core1 Console use the `tip` utility
 Example: `tip "dev=/ttyMsd0#tag=green"`.
 For more information refer the `tip` utility documentation.

 For sample output of VxWorks booting on Core 1 through hard disk, refer to Section A.2.2, VxWorks Booting on Core 1 on page 31.
Booting VxWorks

2.4 USB Boot

2.4.1 Prerequisites

You should have USB pen drive with VxWorks image, and vfat or ext2fs file system

2.4.2 Booting Procedure

To boot VxWorks AMP using USB, perform the following steps:

1. Power up the MVME2500 board.
 By default, it provides the U-Boot prompt.

2. Set the environmental variables.
   ```
   setenv ipaddr <Board IP address>
   setenv serverip <TFTP server IP address>
   setenv gatewayip <Gateway IP address>
   setenv netmask <Netmask>
   ```
 Example:
   ```
   setenv ipaddr 10.130.101.206
   setenv serverip 10.130.101.216
   setenv gatewayip 10.130.101.254
   setenv netmask 255.255.255.0
   ```

3. Set the VxWorks boot image file name.
   ```
   setenv vxbootfile vxWorks_00.st
   ```

4. Set the VxWorks bootline arguments.
   ```
   setenv vxbootargs 'motetsec(0,0)10.130.101.216:vxWorks
   h=10.130.101.216  e=10.130.101.206:ffffff00  u=vxworks pw=vxworks
   f=0x80'
   ```

Parameters description:
- `motetsec(0,0)` : ethernet interface 0 on cpu 0
- `10.130.101.216` : Host Machine IP
- `10.130.101.206` : Board IP
- `ffffff00` : Netmask
- `u=vxworks` : Username on host machine
- `p=vxworks` : Password for the above user in host machine
- `f=0x80` : File Transfer Protocol (FTP)
Booting VxWorks

5. Set the VxWorks USB boot command.
   ```
   setenv vxusbboot 'usb reset && fatload usb 0:1 0x1000000 $vxbootfile && setenv bootargs $vxbootargs && bootvx'
   ```

6. Save your current environmental variables.
   ```
   saveenv
   ```

7. To boot VxWorks on Core 0 through USB, execute the following command:
   ```
   run vxusbboot
   ```
 This will boot VxWorks on Core 0 only.
 For sample output of VxWorks booting on Core 0 through USB, refer to Section A.3.1, VxWorks Booting on Core 0 on page 33.

8. Boot VxWorks Image on Core 1, execute `wrload` command.
 Example: `wrload "-file <image dir>/vxWorks -cpu 1"

 To access the Core1 Console use the tip utility
 Example: `tip "dev=/ttyMsd0#tag=green".

 For more information refer the tip utility documentation.

 For sample output of VxWorks booting on Core 1 through USB, refer to Section A.3.2, VxWorks Booting on Core 1 on page 34.
Building Board Support Package

3.1 Building Procedure

The `mvme2500_AMP_rel1.0.tar.gz` contains VxWorks 6.8 AMP BSP source files for the MVME2500 board.

Perform the following steps to build the BSP:

1. Extract the `mvme2500_AMP_rel1.0.tar.gz` to any working directory.
2. Start the Wind River VxWorks Workbench by executing the following command:
   ```shell
   <VxWorks Installation Directory>/startWorkbench.sh
   ```
3. Create a new project for Core 0:
 - Open the Wind River VxWorks Workbench. Select **File -> New -> VxWorks Image Project**.
Building Board Support Package

- Give a project name and then click **Next**.
Go to BSP and select `mvme2500_amp` from the drop down list. Click **Browse** and point to the location where you have extracted the BSP. Click **Next**.
Building Board Support Package

- Select any configuration profile.
- Click Finish.
Building Board Support Package
Building Board Support Package

- Once the Project is created, click **Kernel Configuration** and perform the following:
 - Enable **Multi-OS IPC serial device**
Enable `INCLUDE_AMP_CPU` and `INCLUDE_AMP_CPU_00`
Building Board Support Package

- Enable `INCLUD_WRLOAD`
- Save the Kernel configuration. Right-click the project name which you have created, and select **Build Project**.
4. Create a new project for Core 1:
 - Follow the first five sub-steps in Step 3.
 - Enable the following Kernel Configuration parameters:
 - Enable **Multi-OS IPC Serial Device**.
 Modify `MFD_CFG_STR`, change

       ```
       #dev=/ttyMsd0 node=0 instance=0 console=n bus=main
       ```
 to

       ```
       #dev=/ttyMsd0 node=0 instance=0 console=y bus=main
       ```
 - Enable **INCLUDE_AMP** and **INCLUDE_AMP_CPU_01**
 - Enable **INCLUDE_WRLOAD_IMAGE_BUILD**
 - Save the Kernel Configuration. Right-click the project name which you have created, and select **Build Project**.
Sample Output

A.1 Network Boot

A.1.1 VxWorks Booting on Core 0

MVME-2500 (Mon 1.0) => run vxboot
Speed: 100, full duplex
Using eTSEC1 device
TFTP from server 10.130.101.216; our IP address is 10.130.101.206
Filename 'vxWorks_00.st'.
Load address: 0x1000000
Loading:
###
###
###
###
done
Bytes transferred = 3326700 (32c2ec hex)
Ethernet MAC address not copied to NV RAM
Using bootline (@ 0x4200): motetsec(0,0)10.130.101.216:vxWorks
h=10.130.101.216 e=10.130.101.206:ffffff00 u=vxworks pw=vxworks f=0x80
Starting vxWorks at 0x00100000 ...
Target Name: vxTarget
0x2541220 (devConnect): vxbIntelAhciInstConnect pDev 0x3888a8

Adding 8307 symbols for standalone.
Memory Size: 0x20000000. BSP version 2.0/2.
Created: Apr 14 2011, 11:01:52
ED&R Policy Mode: Deployed
WDB Comm Type: WDB_COMM_END
WDB: Ready.

-> 0x2541220 (devConnect): ahciDrv called 0x253f430 0xa4100000
Instantiating /ahci00:2 as rawFs, device = 0x30000
A.1.2 VxWorks Booting on Core 1

=> wrload "-f vxWorks_01.st"

Loading...
0x21000000 - 0x21200670 loaded
0x21200670 - 0x212007b4 loaded
0x212007b4 - 0x212008a8 loaded
0x21240000 - 0x21277ef8 loaded
0x21277ef8 - 0x212a283c zeroed
value = 0 = 0x0

=> tip "dev=/ttyMsd0"
Connected to /ttyMsd0.
Press ~? for the list of available commands.
[Now listening to session 1 (/ttyMsd0)]
[Input wired to session 1 (/ttyMsd0)]
Target Name: vxTarget

Adding 8240 symbols for standalone

Development System
VxWorks 6.8
KERNEL: WIND version 2.13
Copyright Wind River Systems, Inc., 1984-2009

Memory Size: 0x20000000. BSP version 2.0/2.
Created: Apr 14 2011, 11:04:22
ED&R Policy Mode: Deployed
WDB Comm Type: WDB_COMM_END
WDB: Ready
A.2 Disk Boot

A.2.1 VxWorks Booting on Core 0

MVME-2500 (Mon 1.0) => run vxdiskboot

Loading file "vxWorks_00.st" from scsi device 0:1 (sda1)
3824532 bytes read

Ethernet MAC address not copied to NV RAM
Using bootline (@ 0x4200): motetsec(0,0)10.130.101.216:vxWorks
h=10.130.101.216 e=10.130.101.206:ffffff00 u=vxworks pw=vxworks f=0x80

Starting vxWorks at 0x00100000 ...

Target Name: vxTarget
0x2585430 (devConnect): vxbIntelAhciInstConnect pDev 0x3d0d40

Adding 8784 symbols for standalone.

[Development System]
VxWorks 6.8
KERNEL: WIND version 2.13
Copyright Wind River Systems, Inc., 1984-2009

Memory Size: 0x20000000. BSP version 2.0/2.
Created: Apr 14 2011, 17:53:10
ED&R Policy Mode: Deployed
WDB Comm Type: WDB_COMM_END
WDB: Ready
-> 0x2585430 (devConnect): ahciDrv called 0x2583640 0xa4100000
0x25a5a90 (BusM A): INFO: usb2Msc - Storage driver got a device attach notification.
0x25a5a90 (BusM A): INFO: usb2Msc - Mounting device (PDT 0x0 PQ 0x0 RMB 0x1)
VID = JetFlash : PID = Transcend 8GB : REV = 1100

0x259b770 (tErfTask): INFO: usb2Msc - Device 0x2 LUN 0 of 7925760 (KB) will be mounted with base name /bd0
Instantiating /ahci00:2 as rawFs, device = 0x30001

0x259b770 (tErfTask): INFO: usb2Msc - Device /bd0 has been claimed by filesystem
NOTIFY: hDevice 0x2 lun 0 medium changed (mediumInsert = 1)
->

A.2.2 VxWorks Booting on Core 1

=> wrload "-f vxWorks_01.st"

Loading...
0x2100000 - 0x2120007b4 loaded
0x212007b4 - 0x212008a8 loaded
0x21240000 - 0x21277ef8 loaded
0x21277ef8 - 0x212a283c zeroed
value = 0 = 0x0
-> tip "dev=/ttyMsd0"
Connected to /ttyMsd0.
Press ~? for the list of available commands.

[Now listening to session 1 (/ttyMsd0)]
[Input wired to session 1 (/ttyMsd0)]
Target Name: vxTarget

Adding 8240 symbols for standalone.
Development System
VxWorks 6.8
KERNEL: WIND version 2.13
Copyright Wind River Systems, Inc., 1984-2009

Memory Size: 0x20000000. BSP version 2.0/2.
Created: Apr 14 2011, 11:04:22
ED&R Policy Mode: Deployed
WDB Comm Type: WDB_COMM_END
WDB: Ready.
A.3 USB Boot

A.3.1 VxWorks Booting on Core 0

MVME-2500 (Mon 1.0) => run vxusbboot

(Re)start USB...
USB: Register 10011 NbrPorts 1
USB EHCI 1.00
scanning bus for devices... 2 USB Device(s) found
scanning bus for storage devices... 1 Storage Device(s) found
reading vxWorks_00.st

3824532 bytes read
Ethernet MAC address not copied to NV RAM
Using bootline (@ 0x4200): motetsec(0,0)10.130.101.216:vxWorks
h=10.130.101.216 e=10.130.101.206:ffffff00 u=vxworks pw=vxworks f=0x80
Starting vxWorks at 0x00100000 ...
Target Name: vxTarget
0x2585430 (devConnect): vxbIntelAhciInstConnect pDev 0x3d0d40
Adding 8784 symbols for standalone.

Development System
VxWorks 6.8
KERNEL: WIND version 2.13
Copyright Wind River Systems, Inc., 1984-2009
Memory Size: 0x20000000. BSP version 2.0/2.
Created: Apr 14 2011, 17:53:10
ED&R Policy Mode: Deployed
WDB Comm Type: WDB_COMM_END
WDB: Ready

->0x2585430 (devConnect): ahciDrv called 0x2583640 0xa4100000
0x25a5a90 (BusM A): INFO: usb2Msc - Storage driver got a device attach notification.

0x25a5a90 (BusM A): INFO: usb2Msc - Mounting device (PDT 0x0 PQ 0x0 RMB 0x1)
VID = JetFlash : PID = Transcend 8GB : REV = 1100
0x25a5a90 (BusM A): INFO: usb2Msc - Device 0x2 LUN 0 of 7925760 (KB) will be mounted with base name /bd0
Instantiating /ahci00:2 as rawFs, device = 0x30001
0x259b770 (tErfTask): INFO: usb2Msc - Device /bd0 has been claimed by filesystem
NOTIFY: hDevice 0x2 lun 0 medium changed (mediumInsert = 1)

A.3.2 VxWorks Booting on Core 1

=> wrload "-f vxWorks_01.st"

Loading...
0x21000000 - 0x21200670 loaded
0x21200670 - 0x212007b4 loaded
0x212007b4 - 0x212008a8 loaded
0x21240000 - 0x21277ef8 loaded
0x21277ef8 - 0x212a283c zeroed
value = 0 = 0x0
=> tip "dev=/ttyMsd0"
Connected to /ttyMsd0.

Press ~? for the list of available commands.

[Now listening to session 1 (/ttyMsd0)]
[Input wired to session 1 (/ttyMsd0)]
Target Name: vxTarget

Adding 8240 symbols for standalone.
Development System

VxWorks 6.8

KERNEL: WIND version 2.13

Copyright Wind River Systems, Inc., 1984-2009

Memory Size: 0x20000000. BSP version 2.0/2.
Created: Apr 14 2011, 11:04:22
ED&R Policy Mode: Deployed
WDB Comm Type: WDB_COMM_END
WDB: Ready.
B.1 SMART Embedded Computing Documentation

The documentation listed is referenced in this manual. Technical documentation can be found by using the Documentation Search at https://www.smartembedded.com/ec/support/ or you can obtain electronic copies of SMART EC documentation by contacting your local sales representative.

Table B-1 SMART EC Documentation

<table>
<thead>
<tr>
<th>Document Title</th>
<th>Publication Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>MVME2500 Installation and Use</td>
<td>6806800L01</td>
</tr>
<tr>
<td>MVME2500 Quick Start Guide</td>
<td>6806800L03</td>
</tr>
<tr>
<td>MVME2500 Safety Notes Summary</td>
<td>6806800L13</td>
</tr>
<tr>
<td>MVME2500-ECC Installation and Use</td>
<td>6806800N30</td>
</tr>
<tr>
<td>MVME2500 VxWorks 6.8 User Guide</td>
<td>6806800M27</td>
</tr>
</tbody>
</table>